Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Building and Environment ; : 108555, 2021.
Article in English | ScienceDirect | ID: covidwho-1507723

ABSTRACT

Infectious diseases have caused significant physical harm to humans as well as enormous economic losses over the years. Effective ventilation and distribution of fresh air could help to reduce indoor cross-infection. The computational fluid dynamics (CFD) method was used in this paper to investigate airborne transmission with seven different air distribution methods. The revised Wells-Riley model, which took into account the non-uniform air distribution generated with the methods, was used to calculate the infection probability in an office room shared by ten occupants for 4 h. One of the occupants was an infector. The significance of the infector's location was studied. The obtained infection probability was compared to that obtained in the case of complete air mixing, which is uncommon in practice. Under specified conditions of this study, personalized ventilation (PV) performed the best in terms of preventing cross-infection, followed by displacement ventilation (DV), impinging jet ventilation (IJV), stratum ventilation (SV) and wall attachment ventilation (WAV). The number of infected occupants was reduced below the number obtained under the complete mixing assumption by using these air distribution methods. Mixing ventilation (MV) and diffuse ceiling ventilation (DCV) exhibited the worst performance. In comparison to the case of complete mixing the infection probability for seven out of nine susceptible occupants was higher with MV and for all occupants in the case of DCV. In SV, the position of the infector had a clear impact on the infection probability of susceptible individuals. WAV may perform better in practice if the system is well designed. The location of the exhaust outlets had a significant impact on the infection probability for DCV.

2.
Engineering (Beijing) ; 8: 130-137, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1065073

ABSTRACT

The transmission of coronavirus disease 2019 (COVID-19) has presented challenges for the control of the indoor environment of isolation wards. Scientific air distribution design and operation management are crucial to ensure the environmental safety of medical staff. This paper proposes the application of adaptive wall-based attachment ventilation and evaluates this air supply mode based on contaminants dispersion, removal efficiency, thermal comfort, and operating expense. Adaptive wall-based attachment ventilation provides a direct supply of fresh air to the occupied zone. In comparison with a ceiling air supply or upper sidewall air supply, adaptive wall-based attachment ventilation results in a 15%-47% lower average concentration of contaminants, for a continual release of contaminants at the same air changes per hour (ACH; 10 h-1). The contaminant removal efficiency of complete mixing ventilation cannot exceed 1. For adaptive wall-based attachment ventilation, the contaminant removal efficiency is an exponential function of the ACH. Compared with the ceiling air supply mode or upper sidewall air supply mode, adaptive wall-based attachment ventilation achieves a similar thermal comfort level (predicted mean vote (PMV) of -0.1-0.4; draught rate of 2.5%-6.7%) and a similar performance in removing contaminants, but has a lower ACH and uses less energy.

SELECTION OF CITATIONS
SEARCH DETAIL